Characterization of Nickel Porphyrins in Heavy Crude Oil by Positive-Ion Electrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

Xu Zhao, Quan Shi, Chunming Xu, Murray R. Gray Dept. of Chemical and Materials Eng., University of Alberta, Edmonton, AB

In this study, nickel porphyrins were separated using a novel pretreatment method. Metal-free porphyrins were then characterized through methanesulfonic acid (MSA) demetallization via positive-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results show that the pretreatment was effective in improving the extraction yield as well as in releasing a number of compounds that were associated with polycyclic aromatic hydrocarbons and heteroatomic compounds. Five types of metal-free porphyrins were identified in the purified fractions using their accurate molecular weights. Deoxophylleoerythroetioporphyrin (DPEP) was the predominant porphyrin, with its carbon number ranging from C_{27} to C_{52} and its center of mass located on C_{32} . This finding reveals the evolutionary stage of Liaohe heavy crude oil. In addition, various sulfur class species were identified after MSA demetallization, particularly the S₁ class species, which was not directly detected via ESI FT-ICR MS, The double bond equivalents (DBE) values of the S₁ class species range from 1 to 15. The most abundant S₁ class species had a DBE of 4, indicating the presence of low-aromaticity S₁ species such as cyclic-ring sulfides. Therefore, a new pretreatment method for the identification of polycyclic aromatic sulfur heterocycles via ESI FT-ICR MS was developed.